THE UNIQUENESS OF HERMITE SERIES UNDER POISSON-ABEL SUMMABILITY(1)

BY LAWRENCE S. KROLL(2)

Introduction. The differential equation

(1)
$$y''(x) - 2xy'(x) + 2nyx = 0 \qquad (n = 0, 1, 2, ...),$$

known as Hermite's equation arises in quantum mechanics in connection with the one-dimensional simple harmonic oscillator. It can be solved by the method of undetermined coefficients and yields the Hermite polynomials

(2)
$$H_n(x) = (-1)^n \exp(x^2) [d^n \exp(-x^2)/dx^n] \qquad (n = 0, 1, 2, ...).$$

These polynomials are orthogonal with respect to the weight function $\exp(-x^2)$. We will work with the normalized Hermite functions

(3)
$$\Phi_n(x) = \exp\left(-x^2/2\right)H_n(x)/\pi^{1/4}(n!)^{1/2}2^{n/2} \qquad (n=0,1,2,\ldots),$$

which are orthonormal on $(-\infty, \infty)$ and complete in \mathcal{L}_2 [1, p. 288].

Notations and definitions will be as in the main reference of this paper [2]. For any real number p, we say that $f \in \mathcal{H}_p$ if the function $f \in \mathcal{L}$ on every finite interval, and if

(4)
$$\int_{-\infty}^{\infty} |x^p f(x)| \exp(-x^2/2) dx < +\infty.$$

If $f \in \mathcal{H}_p$, for every $p \ge 0$, we say that $f \in \mathcal{H}$. If $f \in \mathcal{H}$, and if

$$a_n = \int_{-\infty}^{\infty} f(x) \Phi_n(x) dx$$
 $(n = 0, 1, 2, ...),$

the generalized Fourier series coefficients, then we say that the series $\sum_{n=0}^{\infty} a_n \Phi_n(x)$ is the Hermite series of f(x), and write

(5)
$$f(x) \sim \sum_{n=0}^{\infty} a_n \Phi_n(x).$$

If the series $\sum_{n=0}^{\infty} a_n \Phi_n(x) r^n$ converges, for $0 \le r < 1$, to f(x, r), then the functions $f^*(x) = \limsup_{r \to 1} f(x, r)$ and $f_*(x) = \liminf_{r \to 1} f(x, r)$ are called the upper and

Received by the editors July 17, 1967.

⁽¹⁾ This research was sponsored by the Air Force Office of Scientific Research, Office of Aerospace Research, United States Air Force, under AFOSR Grant No. AF-AFOSR 694-66.

⁽²⁾ This paper is a portion of the author's doctoral thesis. The author would like to express his sincere appreciation to his advisor, Professor Victor Shapiro.

lower Poisson sums respectively of the series $\sum_{n=0}^{\infty} a_n \Phi_n(x)$. Analogous to the Riemann function for trigonometric series [3, p. 319], we form the series

(6)
$$F(x,r) = -\sum_{n=0}^{\infty} \frac{a_n}{2n+2} \Phi_n(x) r^n \qquad (0 \le r < 1)$$

which under the given hypothesis converges to a function F(x).

Major theorems. This paper is concerned with the problem of determining when a given series of Hermite functions, $\sum_{n=0}^{\infty} a_n \Phi_n(x)$, is a Hermite series in the above sense. In Chapter II we prove

THEOREM I. Let the series $\sum_{n=0}^{\infty} a_n \Phi_n(x) r^n$ converge, for $0 \le r < 1$, to f(x, r). Suppose that

- (i) |f(x, r)| = o(1/(1-r)) uniformly in x as $r \rightarrow 1$;
- (ii) there is a function $y_1 \in \mathcal{H}$ such that $-\infty < y_1(x) \le f_*(x) \le f^*(x) < +\infty$ for all x;
- (iii) there is a function $y_2 \in \mathcal{H}$ such that $-\infty < y_2(x) \le F(x)$ for all x. Then the series $\sum_{n=0}^{\infty} a_n \Phi_n(x)$ is Poisson summable almost everywhere, and is the Hermite series of its Poisson sum.

THEOREM II. Let the series $\sum_{n=0}^{\infty} a_n \Phi_n(x) r^n$ converge, for $0 \le r < 1$, to f(x, r). Suppose that

- (i) |f(x,r)| = o(1/(1-r)) uniformly in x as $r \to 1$;
- (ii) $\lim_{r\to 1} f(x,r) = 0$ for all x.

Then $a_n = 0$ for all n.

In Chapter II we shall show that these theorems are, in a certain sense, best possible. They extend several of the main results in Rudin's paper [2]. This paper was motivated by V. L. Shapiro's work on harmonic analysis and the heat equation, in particular [4].

CHAPTER I

Fundamental lemmas.

LEMMA 1. Suppose

- (i) \mathscr{D} is the open rectangle: -R < x < R, $T_1 < t < T_2$ with boundary $\dot{\mathscr{D}}$. Let $\dot{\mathscr{D}}_1 = \{(x, t) \mid -R < x < R, t = T_2\}$ and let $\dot{\mathscr{D}}_2 = \dot{\mathscr{D}} \sim \dot{\mathscr{D}}_1$;
 - (ii) h(x, t) satisfies

(7)
$$h_{xx}(x,t) - (x^2+1)h(x,t) = 2h_t(x,t) \text{ in } \mathcal{D} \cup \dot{\mathcal{D}}_1,$$

where

$$h(x, t) \in \mathscr{C}^2(\mathscr{D} \cup \dot{\mathscr{D}}_1)$$
 and $h(x, t) \in \mathscr{C}^0(\mathscr{D} \cup \dot{\mathscr{D}});$

(iii) $\lim \inf_{(x,t)\to(x_0,t_0)} h(x,t) \ge 0$ for all $(x_0,t_0) \in \dot{\mathcal{D}}_2$.

Then (a) $h(x, t) \ge 0$ in $\mathcal{D} \cup \dot{\mathcal{D}}$;

(b) h(x, t) assumes its maximum in $\hat{\mathcal{D}}_2$.

Proof. Suppose $h(x_1, t_1) < 0$, where $(x_1, t_1) \in \mathcal{D}$. By (iii) and the continuity of h(x, t) on the compact set $\mathcal{D} \cup \dot{\mathcal{D}}$, h(x, t) must assume its minimum in $\mathcal{D} \cup \dot{\mathcal{D}}_1$, say at $(x_0, t_0) \in \mathcal{D} \cup \dot{\mathcal{D}}_1$, and $h(x_0, t_0) < 0$. This means $h_{xx}(x_0, t_0) \ge 0$ and $h_t(x_0, t_0) \le 0$. Since h(x, t) satisfies (7) in $\dot{\mathcal{D}} \cup \dot{\mathcal{D}}_1$, at (x_0, t_0) we have

$$\underbrace{h_{xx}(x_0, t_0)}_{\geq 0} \underbrace{-2h_t(x_0, t_0)}_{\geq 0} \underbrace{-(x_0^2 + 1)h(x_0, t_0)}_{> 0} = 0.$$

This is a contradiction in signs, proving (a).

Suppose h(x, t) assumes its maximum in $\mathcal{D} \cup \dot{\mathcal{D}}_1$, at a point (x_2, t_2) . Then $h_t(x_2, t_2) \ge 0$ and $h_{xx}(x_2, t_2) \le 0$. Again using (7) we have

$$\underbrace{h_{xx}(x_2, t_2)}_{\leq 0} \underbrace{-2h_t(x_2, t_2)}_{\leq 0} \underbrace{-(x_2^2 + 1)h(x_2, t_2)}_{\leq 0} = 0.$$

This means each term must be zero and $h(x_2, t_2) = 0$. Since $h(x, t) \ge 0$ in $\mathcal{D} \cup \dot{\mathcal{D}}$, the maximum in $\mathcal{D} \cup \dot{\mathcal{D}}_1$ is zero. This means h(x, t) = 0 for $(x, t) \in \mathcal{D} \cup \dot{\mathcal{D}}$, hence in any case h(x, t) assumes its maximum in $\dot{\mathcal{D}}_2$.

LEMMA 2. Suppose

(i) N(x, r) satisfies

(8)
$$N_{xx}(x,r) - (x^2+1)N(x,r) + 2[rN(x,r)]_r = 0$$

for $-\infty < x < +\infty$ and $0 \le r < 1$, where $N(x, r) \in \mathscr{C}^2$ for $-\infty < x < +\infty$ and $0 \le r < 1$;

- (ii) $\lim_{r\to 1} N(x, r) = 0$ uniformly on compact subsets;
- (iii) $|N(x, r)| \le K$, a positive constant for $-\infty < r < +\infty$ and $0 \le r < 1$.

Then $N(x, r) \equiv 0$ for $-\infty < x < +\infty$ and $0 \le r < 1$.

Proof. Define $h(x, t) = e^{-t}N(x, e^{-t})$ for $-\infty < x < \infty$ and $0 < t < \infty$. Then h(x, t) satisfies (7). We note $|h(x, t)| = e^{-t}|N(x, e^{-t})| \le K$, a constant for all x and t > 0. $\lim_{t \to 0} h(x, t) = \lim_{t \to 0} e^{-t} \lim_{t \to 0} N(x, e^{-t}) = 0$ uniformly on compact subsets. To show N(x, t) = 0, it is sufficient to show h(x, t) = 0. Consider the function

$$B(x, t) = \frac{1}{(\pi(1 - e^{-2t}))^{1/2}} \exp\left\{\frac{x^2 - 2t}{2} - \frac{x^2}{1 - e^{-2t}}\right\} \quad \text{for } t > 0.$$

Claim B satisfies (7) for t > 0 and all x.

$$B_{x}(x, t) = \frac{-x}{\pi^{1/2}} \exp\left\{\frac{x^{2} - 2t}{2} - \frac{x^{2}}{1 - e^{-2t}}\right\} \frac{(1 + e^{-2t})}{(1 - e^{-2t})^{3/2}},$$

$$B_{xx}(x, t) = \frac{-1}{\pi^{1/2}} \frac{\exp\left\{(x^{2} - 2t)/2 - x^{2}/(1 - e^{-2t})\right\}}{(1 - e^{-2t})^{5/2}} \left[(1 - e^{-4t}) - x^{2}(1 + e^{-2t})^{2}\right],$$

$$B_{t}(x, t) = \frac{-1}{\pi^{1/2}} \frac{\exp\left\{(x^{2} - 2t)/2 - x^{2}/(1 - e^{-2t})\right\}}{(1 - e^{-2t})^{5/2}} \left[(1 - e^{-2t}) - 2x^{2}e^{-2t}\right].$$

Thus $B_{xx}(x, t) - 2B_t(x, t) = (x^2 + 1)B(x, t)$ which is (7). Set

$$U^{R}(x, t) = K[B(x+R, t) + B(x-R, t)]$$

for R>0 and t>0. Then $U^R(x, t)$ satisfies (7) since B does, for all x and t>0. Note

$$B(0, t) = e^{-t}/(\pi(1-e^{-2t}))^{1/2} = 1/(\pi(e^{2t}-1))^{1/2}$$
 for $t > 0$.

Thus $U^R(+R, t) = K[B(2R, t) + B(0, t)] \ge KB(0, t)$ since $B \ge 0$ and $U^R(-R, t) = K[B(0, t) + B(-2R, t)] \ge KB(0, t)$ since $B \ge 0$. Thus

$$U^{R}(\pm R, t) \ge K/(\pi(e^{2t}-1))^{1/2}$$
 for $t > 0$.

Let T be an arbitrary positive number. For $0 < t \le T$ we have

(9)
$$|h(\pm R, t)| \leq K \leq K(\pi(e^{2T}-1))^{1/2}/(\pi(e^{2t}-1))^{1/2} \leq (\pi(e^{2T}-1))^{1/2} U^{R}(\pm R, t)$$
 for $t > 0$

Hence the functions $(\pi(e^{2T}-1))^{1/2} U^R(x, t) \pm h(x, t)$ which both satisfy (7) in the open rectangle -R < x < R and 0 < t < T are nonnegative on the sides by (9). Call the open rectangle $D_{R,T}$. On the lower boundary of $D_{R,T}$ we have

$$\lim_{t\to 0} h(x, t) = 0 \quad \text{and} \quad \lim_{t\to 0} U^{R}(x, t) = 0 \text{ uniformly.}$$

Thus Lemma 1 applies and we have

$$(\pi(e^{2T}-1))^{1/2} U^R(x, t) \pm h(x, t) \ge 0 \text{ in } D_{R,T} \text{ closure.}$$

This means $|h(x, t)| \le (\pi(e^{2T} - 1))^{1/2} U^R(x, t)$. Holding (x, t) fixed and letting $R \to \infty$ we have $\lim_{R \to \infty} U^R(x, t) = 0$.

Thus |h(x, t)| can be made arbitrarily small which gives

$$h(x, t) \equiv 0$$
 for $-\infty < x < +\infty$ and $0 < t < T$.

But T was arbitrary, thus $h(x, t) \equiv 0$ for $-\infty < x < \infty$ and all t > 0.

LEMMA 3. Let $f(x, r) = \lim_{N \to \infty} \sum_{k=0}^{N} a_k \Phi_k(x) r^k$ exist for $-\infty < x < +\infty$ and $0 \le r < 1$.

Then (a) for fixed r, $0 \le r < 1$, f(x, r) converges uniformly in x.

(b)
$$f(x, r) \in \mathcal{H}$$
 for $0 \le r < 1$.

Proof. Since f(x, r) converges, $\lim_{n\to\infty} a_n \Phi_n(x) r^n = 0$ for all x and fixed r, $0 \le r < 1$. By [2, Theorem 7],

(10)
$$a_n r^n = o(n^{1/4})$$
 for $0 \le r < 1$.

By choosing δ such that $(1+\delta)r < 1$ we see that $a_n[(1+\delta)r]^n \le Kn^{1/4}$ for all n, where K is a positive constant. Since $|H_n(x)| < 1.1(n!)^{1/2} 2^{n/2} \exp(x^2/2)$ for all x and n [5, p.324], we get

(11)
$$|\Phi_n(x)| < 1 \quad \text{for all } x \text{ and } n.$$

Thus

$$|f(x,r)| \leq \sum_{n=0}^{\infty} |a_n r^n| |\Phi_n(x)| \leq K \sum_{n=0}^{\infty} \frac{n^{1/4}}{(1+\delta)^n} = K_1 < +\infty,$$

by the Weierstrass M-test for $0 \le r < 1$, which proves (a).

Since

$$\int_{-\infty}^{\infty} |x^{p} f(x, r)| \exp(-x^{2}/2) dx \le \int_{-\infty}^{\infty} |x|^{p} \sum_{n=0}^{\infty} \frac{K n^{1/4}}{(1+\delta)^{n}} \exp(-x^{2}/2) dx$$
$$\le K_{1} \int_{-\infty}^{\infty} |x^{p}| \exp(-x^{2}/2) dx < +\infty$$

for all $p \ge 0$, we have (b).

The Poisson kernel for Hermite series [6] has the form

(12)
$$P(x, t, r) = \sum_{n=0}^{\infty} \Phi_n(x) \Phi_n(t) r^n = [\pi (1 - r^2)]^{1/2} \exp\left\{ \frac{x^2 - t^2}{2} - \frac{(x - rt)^2}{1 - r^2} \right\}$$

$$(0 \le r < 1).$$

For ease in integration we write

(13)
$$P(x, t, r) = \frac{\exp\left(-\frac{x^2}{2}\left(\frac{1-r^2}{1+r^2}\right)\right)}{\pi^{1/2}(1-r^2)^{1/2}} \exp\left\{-\frac{(1+r^2)}{2(1-r^2)}\left(t-\frac{2xr}{1+r^2}\right)^2\right\}$$

$$(0 \le r < 1)$$

and

(14)
$$P_x(x,t,r) = \left[\frac{-x(1+r^2)+2rt}{1-r^2}\right]P(x,t,r) \qquad (0 \le r < 1).$$

LEMMA 4. Let $f(x, r) = \sum_{n=0}^{\infty} a_n \Phi_n(x) r^n$ exist for $-\infty < x < +\infty$ and $0 \le r < 1$. Suppose that $|f(x, r)| \le \varepsilon(r)/(1-r)$ for $-\infty < x < +\infty$ and $0 \le r < 1$, where $\varepsilon(r)$ is bounded and $\varepsilon(r) = o(1)$ as $r \to 1$. Then

$$f(x, r+r_0-1) = \int_{-\infty}^{\infty} f(t, r_0) P\left(x, t, \frac{r+r_0-1}{r_0}\right) dt$$

for $0 < r_0 < 1$ and $1 - r_0 < r < 1$.

Proof. By [2, p. 398], we can differentiate across the integral and show

$$\int_{-\infty}^{\infty} f(t, r_0) P\left(x, t, \frac{r+r_0-1}{r_0}\right) dt$$

satisfies (8). Using the substitution $z=(r+r_0-1)/r_0$ we have

$$\lim_{r\to 1}\int_{-\infty}^{\infty}f(t,r_0)P\left(x,t,\frac{r+r_0-1}{r_0}\right)dt = \lim_{z\to 1}\int_{-\infty}^{\infty}f(t,r_0)P(x,t,z)\,dt = f(x,r_0)$$

uniformly on compact subsets, since $f(x, r_0)$ is continuous and in \mathcal{H} . Since

$$|f(t,r_0)| \leq \frac{\varepsilon(r_0)}{1-r_0}$$
 and $\int_{-\infty}^{\infty} P(x,t,r) dt \leq 2$,

we have

$$\left| \int_{-\infty}^{\infty} f(t, r_0) P\left(x, t, \frac{r + r_0 - 1}{r_0}\right) dt \right| \le \frac{\varepsilon(r_0)}{1 - r_0} < K$$

for all x, $1-r_0 \le r < 1$.

The above three conditions are also met by $f(x, r+r_0-1)$. In fact,

$$|f(x, r+r_0-1)| \le \sum_{n=0}^{\infty} |a_n r_0^n| |\Phi_n(x)| \le K_1 \sum_{n=0}^{\infty} \frac{n^{1/4}}{(1+\delta)^n} = K_2$$

for all x and r, using (10) and choosing δ as in Lemma 3. $f(x, r+r_0-1)$ satisfies (8) since $\Phi_n(x)$ satisfies [7, p. 105]

$$\Phi_n''(x) - (x^2 + 1)\Phi_n(x) = -(2n + 2)\Phi_n(x) \qquad (n = 0, 1, 2, ...).$$

The uniform continuity of $f_x(x, r)$ and $f_{xx}(x, r)$ follows from the *M*-test.

Thus

$$f(x, r+r_0-1) - \int_{-\infty}^{\infty} f(t, r_0) P\left(x, t, \frac{r+r_0-1}{r_0}\right) dt$$

satisfies all the conditions of Lemma 2, proving this lemma.

LEMMA 5. Let $f(x,r) = \sum_{n=0}^{\infty} a_n \Phi_n(x) r^n$ exist for $-\infty < x < +\infty$ and $0 \le r < 1$. Suppose that $|f(x,r)| \le \varepsilon(r)/(1-r)$ for $-\infty < x < +\infty$ and $0 \le r < 1$, where $\varepsilon(r)$ is bounded and $\varepsilon(r) = o(1)$ as $r \to 1$.

Then (a) $f_x(x, r) = \sum_{n=0}^{\infty} a_n \Phi'_n(x) r^n$ for $0 \le r < 1$;

- (b) for fixed r, $0 \le r < 1$, $f_x(x, r)$ converges uniformly in x;
- (c) $f_x(x, r) \in \mathcal{H}$ for $0 \le r < 1$;

(d)
$$f_x(x, v+r-1) = \int_{-\infty}^{\infty} f(t, r) P_x\left(x, t, \frac{v+r-1}{r}\right) dt = \sum_{n=0}^{\infty} a_n \Phi'_n(x) (v+r-1)^n$$

for 0 < r < 1 and 1 - r < v < 1;

(e) $|f_x(x,r)| \le \varepsilon_1(r)/(1-r)^{3/2}$ for $-\infty < x < +\infty$ and $\frac{1}{2} \le r_0 < r < 1$, where $\varepsilon_1(r)$ is bounded and $\varepsilon_1(r) = o(1)$ as $r \to 1$.

Proof. By the recursion formula for Hermite polynomials [1, p. 286],

(15)
$$2\Phi'_n(x) = (2n)^{1/2}\Phi_{n-1}(x) - (2n+2)^{1/2}\Phi_{n+1}(x) \quad \text{for } n \ge 1.$$

Using (11) and (15), we have $|\Phi'_n(x)| \le An^{1/2}$ for all n and x where A is a positive constant. Thus

$$\left| \sum_{n=0}^{\infty} a_n \Phi'_n(x) r^n \right| \le \sum_{n=0}^{\infty} |a_n r^n| |\Phi'_n(x)|$$

$$\le K \sum_{n=0}^{\infty} \frac{n^{1/4} A n^{1/2}}{(1+\delta)^n} = K_2 < +\infty,$$

using (10) and the ratio test. By the Weierstrass M-test $f_x(x, r) = \sum_{n=0}^{\infty} a_n \Phi'_n(x) r^n$ converges uniformly for all x and $0 \le r < 1$, and the representation is justified, proving (a) and (b).

Since $\int_{-\infty}^{\infty} |x^p f_x(x, r)| \exp(-x^2/2) dx \le K_2 \int_{-\infty}^{\infty} |x^p| \exp(-x^2/2) dx < +\infty$ for all $p \ge 0$ and $0 \le r < 1$ we have (c).

By Lemma 4

$$f(x, v+r-1) = \int_{-\infty}^{\infty} f(t, r) P\left(x, t, \frac{v+r-1}{r}\right) dt$$

for 0 < r < 1 and 1 - r < v < 1. Since $f(t, r) \in \mathcal{H}$ we can differentiate across the integral sign [2, pp. 398, 399] to obtain (d).

Set $\rho = (v+r-1)/r$. Using (d), (14) and the substitution

$$y = [(1+\rho^2)/2(1-\rho^2)]^{1/2}(t-2x\rho/(1+\rho^2)),$$

$$|f_{x}(x, v+r-1)| = \frac{\varepsilon(r)}{1-r} \frac{\exp\left\{-\frac{x^{2}}{2} \left(\frac{1-\rho^{2}}{1+\rho^{2}}\right)\right\}}{\pi^{1/2} (1-\rho^{2})^{3/2}} \int_{-\infty}^{\infty} |-x(1+\rho^{2})+2t\rho| \exp(-y^{2}) dt$$

$$= \frac{\varepsilon(r)}{1-r} \frac{\exp\left\{-\frac{x^{2}}{2} \left(\frac{1-\rho^{2}}{1+\rho^{2}}\right)\right\} 4\rho}{\pi^{1/2} (1-\rho^{2})^{1/2} (1+\rho^{2})}$$

$$\times \int_{-\infty}^{\infty} \left|y - \frac{x(1-\rho^{2})^{3/2}}{[8\rho^{2} (1+\rho^{2})]^{1/2}}\right| \exp(-y^{2}) dy.$$

Set $g_1(x, \rho, r)$ equal to the term outside the integral, and

$$A(x, \rho) = \frac{x(1-\rho^2)^{3/2}}{[8\rho^2(1+\rho^2)]^{1/2}}.$$

Then

$$|f_{x}(x, v+r-1)| = g_{1}(x, \rho, r) \left\{ \int_{-\infty}^{A} (A-y) \exp(-y^{2}) dy + \int_{A}^{\infty} (y-A) \exp(-y^{2}) dy \right\}$$

$$= g_{1}(x, \rho, r) \left\{ A \int_{-A}^{A} \exp(-y^{2}) dy - \int_{A}^{\infty} (-2y) \exp(-y^{2}) dy \right\}$$

$$\leq g_{1}(x, \rho, r) \left\{ A \int_{-A}^{A} \exp(-y^{2}) dy + 1 \right\}.$$

Note $g_1(x, \rho, r) \le \epsilon(r) K_3/(1-r)(1-\rho)^{1/2}$, where K_3 is a positive constant. Recalling $\rho = (v+r-1)/r$, set v=r to get $1/(1-\rho) < 1/(1-r)$, and $g_1(x, (2r-1)/r, r) = \epsilon_1(r)/(1-r)^{3/2}$ if $1 > \rho > 0$. To ensure this, choose $r_0 > \frac{1}{2}$. Then, for $r > r_0$, we have 2-1/r > 0, (2r-1)/r > 0, and $\rho = (2r-1)/r > 0$. Thus for $r > r_0$,

$$g_1(x, (2r-1)/r, r) = \varepsilon_1(r)/(1-r)^{3/2},$$

where $e_1(r)$ is bounded and o(1) as $r \to 1$.

Part (e) of Lemma 5 will be proven if we show that

$$g_1(x, \frac{2r-1}{r}, r)A \int_{-A}^{A} \exp(-y^2) dy \le \frac{\varepsilon_1(r)}{(1-r)^{3/2}}$$

or that

$$\frac{\varepsilon(r)}{1-r} K_4 \frac{\exp\left\{-\frac{x^2}{2} \left(\frac{1-\rho^2}{1+\rho^2}\right)\right\}}{(1-\rho^2)^{1/2}} |x| (1-\rho^2)^{3/2} \int_{-\infty}^{\infty} \exp\left(-y^2\right) dy \le \frac{\varepsilon_1(r)}{(1-r)^{3/2}}$$
for $r_0 < r < 1$.

It is sufficient to show

$$|x| \left(\frac{1-\rho^2}{1+\rho^2}\right) \exp\left\{-\frac{x^2}{2} \left(\frac{1-\rho^2}{1+\rho^2}\right)\right\}$$

is uniformly bounded for ρ near 1. Setting $\eta = (1 - \rho^2)/(1 + \rho^2)$ and noting $\eta \to 0$ as $\rho \to 1$ we need only show $|x|\eta \exp((-x^2/2)\eta)$ is uniformly bounded. In fact, for $0 \le \eta < \frac{1}{2}$, $|x|\eta \exp((-x^2/2)\eta) < 1$.

Generalized Hermite operators. $\Phi_n(x)$ satisfies [7, p. 105]

(16)
$$\Phi_n''(x) - (x^2 + 1)\Phi_n(x) = -(2n+2)\Phi_n(x) \qquad (n = 0, 1, 2, \ldots).$$

We consider the equation

(17)
$$y''(x) - (x^2 + 1)y(x) = 0.$$

Putting

$$\beta(x) = \exp(x^2/2) \int_{-\infty}^{x} \exp(-u^2) du,$$

we note that $\beta(x)$ and $\beta(-x)$ are linearly independent solutions to (17). Given a function F(t), defined in a neighborhood of the point x, and h>0, there exists a unique function y(t) which is a solution of (17) and is such that y(x+h)=F(x+h) and y(x-h)=F(x-h). We define

(18)
$$\Lambda F(x) = \lim_{h \to 0} \frac{2[y(x) - F(x)]}{h^2}$$

provided the limit exists. $\Lambda^*F(x)$ and $\Lambda_*F(x)$ are defined likewise with $\limsup_{h\to 0}$ and $\liminf_{h\to 0}$ in place of \lim . By [2, p. 388],

(19)
$$\Lambda F(x) = F''(x) - (x^2 + 1)F(x) \text{ if } F''(x)$$

exists.

Setting

$$k(x, t) = \pi^{-1/2}\beta(x)\beta(-t)$$
 $(x < t),$
= $\pi^{-1/2}\beta(-x)\beta(t)$ $(x \ge t),$

we define

(20)
$$\Omega f(x) = -\int_{-\infty}^{\infty} f(t)k(x,t) dt,$$

provided $f \in \mathcal{H}_0$. The Ω operator is the inverse of Λ . In particular, for $f \in \mathcal{H}$, $f(x) \sim \sum_{n=0}^{\infty} a_n \Phi_n(x)$ iff $\Omega f(x) \sim \sum_{n=0}^{\infty} (a_n/(2n+2))\Phi_n(x)$ [2, p. 389].

LEMMA 6. Let $f(x,r) = \sum_{n=0}^{\infty} a_n \Phi_n(x) r^n$ exist for $-\infty < x < +\infty$ and $0 \le r < 1$. Suppose that $|f(x,r)| \le \varepsilon(r)/(1-r)$ for $-\infty < x < +\infty$ and $0 \le r < 1$, where $\varepsilon(r)$ is bounded and $\varepsilon(r) = o(1)$ as $r \to 1$. Set $F(x,r) = -\sum_{n=0}^{\infty} (a_n/(2n+2)) \Phi_n(x) r^n$ for $0 \le r < 1$. Then (a) $|F(x,r)| \le \varepsilon_2(r) \log (1/(1-r))$ for $-\infty < x < +\infty$ and $0 \le r < 1$, where $\varepsilon_2(r)$ is bounded and $\varepsilon_2(r) = o(1)$ as $r \to 1$;

- (b) $F(x, r) = \Omega f(x, r)$ and $F(x, r) \in \mathcal{H}$ $(0 \le r < 1)$;
- (c) $F_x(x, r) = \Omega f_x(x, r) = -\sum_{n=0}^{\infty} (a_n/(2n+2))\Phi_n(x)r^n \ (0 \le r < 1);$
- (d) $|F_x(x,r)| \le \varepsilon_3(r)/(1-r)^{1/2}$ for $-\infty < x < +\infty$ and $\frac{1}{2} \le r_0 < r < 1$, where $\varepsilon_3(r)$ is bounded and $\varepsilon_3(r) = o(1)$ as $r \to 1$.

Proof.

$$|rF(x,r)-r_0F(x,r_0)| = \left| -\sum_{n=0}^{\infty} \frac{a_n}{2n+2} \Phi_n(x) r^{n+1} + \sum_{n=0}^{\infty} \frac{a_n}{2n+2} \Phi_n(x) r_0^{n+1} \right|$$

$$= \left| \sum_{n=0}^{\infty} \frac{a_n}{2} \Phi_n(x) \int_r^{r_0} \rho^n d\rho \right| = \left| \int_{r_0}^r \frac{1}{2} \sum_{n=0}^{\infty} a_n \Phi_n(x) \rho^n d\rho \right|$$

since f(x, r) is a power series in r and converges uniformly over compact subsets of r when r is bounded away from 1.

$$\frac{1}{2}\int_{r_0}^r |f(x,\rho)| d\rho \leq \frac{1}{2}\int_{r_0}^r \frac{\varepsilon_1(\rho)}{1-\rho} d\rho = \varepsilon_2(r) \log \frac{1}{1-r},$$

where $\varepsilon_2(r)$ is bounded and o(1) as $r \to 1$.

Thus F(x, r) satisfies all the hypotheses of Lemmas 3, 4, and 5 proving $F(x, r) \in \mathcal{H}$, for $0 \le r < 1$, $F_x(x, r) \in \mathcal{H}$, and $F_x(x, r) = -\sum_{n=0}^{\infty} (a_n/(2n+2))\Phi'_n(x)r^n$. By [2, Theorems 2 and 8] we have $F(x, r) = \Omega f(x, r)$ and $F_x(x, r) = \Omega f(x, r)$.

It remains to prove (d). By Lemma 5, for $r_0 < r < 1$, we have $|f_x(x, r)| \le \varepsilon_1(r)/(1-r)^{3/2}$. Thus

$$|rF_{x}(x,r) - r_{0}F_{x}(x,r_{0})| \leq \left| -\frac{1}{2} \sum_{n=0}^{\infty} a_{n} \Phi'_{n}(x) \left[\frac{r^{n+1}}{n+1} - \frac{r_{0}^{n+1}}{n+1} \right] \right|$$

$$\leq \left| \frac{1}{2} \int_{r_{0}}^{r} \sum_{n=0}^{\infty} a_{n} \Phi'_{n}(x) \rho^{n} d\rho \right| \leq \frac{1}{2} \int_{r_{0}}^{r} |f_{x}(x,\rho)| d\rho$$

$$\leq \frac{\varepsilon_{3}(r)}{2(1-r)^{1/2}} \quad \text{for } -\infty < x < +\infty \text{ and } \frac{1}{2} \leq r_{0} < r < 1,$$

where $\varepsilon_3(r)$ is bounded and $\varepsilon_3(r) = o(1)$ as $r \to 1$. Thus

$$|F_x(x,r)| \le \frac{\varepsilon_3(r)}{(1-r)^{1/2}}$$
 for $0 \le r_0 < r < 1$,

proving (d).

Smoothness. We shall say that G is smooth at the point x if G(x) is defined and finite in a neighborhood of x and if

(21)
$$\lim_{h \to 0} \left[G(x+h) + G(x-h) - 2G(x) \right]/h = 0.$$

We shall say that G is smooth on $(-\infty, \infty)$ if it is smooth at every point x.

LEMMA 7. Let $f(x, r) = \sum_{n=0}^{\infty} a_n \Phi_n(x) r^n$ exist for $-\infty < x < +\infty$ and $0 \le r < 1$. Suppose that $|f(x, r)| \le \varepsilon(r)/(1-r)$ for $-\infty < x < +\infty$ and $0 \le r < 1$, where $\varepsilon(r)$ is bounded and $\varepsilon(r) = o(1)$ as $r \to 1$.

Set $F(x, r) = -\sum_{n=0}^{\infty} (a_n/(2n+2))\Phi_n(x)r^n$ for $0 \le r < 1$ and

$$G(x, r) = \sum_{n=0}^{\infty} (a_n/(2n+2))^2 \Phi'_n(x) r^n \text{ for } 0 \le r < 1.$$

Then

- (a) $|G(x, r)| \le K_5$, a positive constant, for all x and $0 \le r_1 < r < 1$;
- (b) $G(x, r) = \Omega F_x(x, r)$ and $G(x, r) \in \mathcal{H}$;
- (c) $\lim_{r\to 1} G(x, r) = G(x)$ uniformly in x as $r\to 1$, where G(x) is a bounded continuous function on $(-\infty, \infty)$;
 - (d) G(x) is smooth on $(-\infty, \infty)$.

Proof. Choose r_1 and r such that $1 > r > r_1 > r_0 > \frac{1}{2}$, where r_0 is chosen as in Lemma 6 such that

$$|F_x(x,r)| \le \varepsilon_3(r)/(1-r)^{1/2}$$
 for $r_0 < r < 1$.

Then

$$|rG(x,r)-r_{1}G(x,r_{1})| = \left| \sum_{n=0}^{\infty} \frac{a_{n}}{(2n+2)^{2}} \Phi'_{n}(x)(r^{n+1}-r_{1}^{n+1}) \right|$$

$$\leq \frac{1}{2} \left| \int_{r_{1}}^{r} \sum_{n=0}^{\infty} \frac{a_{n}}{2n+2} \Phi'_{n}(x)\rho^{n} d\rho \right|$$

$$\leq \frac{1}{2} \int_{r_{1}}^{r} |F_{x}(x,\rho)| d\rho \quad \text{since } F_{x}(x,r) \text{ converges uniformly}$$

$$\leq \frac{1}{2} \int_{r}^{r} \frac{\varepsilon_{3}(\rho)}{(1-\rho)^{1/2}} d\rho \leq K_{5}[(1-r)^{1/2}-(1-r)^{1/2}].$$

Thus, G(x, r) is uniformly bounded for all x and $1 > r > r_0$, and G(x, r) converges uniformly to a bounded continuous function G(x).

Since G(x, r) satisfies the hypothesis of Lemma 6, we have (b).

To prove G(x) is smooth on $(-\infty, \infty)$, let x_0 be given arbitrarily. Select $\delta < (1-r_0)^{1/2}$. Then for $0 < h < \delta$,

$$\begin{split} [G(x_0+h)+G(x_0-h)-2G(x_0)]/h \\ &= [G(x_0+h,\,1-h^2)+G(x_0-h,\,1-h^2)-2G(x_0,\,1-h^2)]/h \\ &+ [G(x_0+h)-G(x_0+h,\,1-h^2)]/h \\ &+ [G(x_0-h)-G(x_0-h,\,1-h^2)]/h \\ &+ 2[G(x_0,\,1-h^2)-G(x_0)]/h. \end{split}$$

We conclude from (21) that to show G is smooth at x_0 , and consequently on $(-\infty, \infty)$, we need only establish

(22)
$$\lim_{h\to 0} \left[G(x, 1-h^2) - G(x) \right]/h = 0 \quad \text{uniformly for } |x-x_0| \le \delta,$$

and

(23)
$$G(x_0+h, 1-h^2)+G(x_0-h, 1-h^2)-2G(x_0, 1-h^2)=o(h)$$
 as $h\to 0$.

To show that (22) holds we will show that given $\varepsilon > 0$ there is an h_0 , such that for $0 < h < h_0$ and all x such that $|x - x_0| \le \delta$, we have $|G(x, 1 - h^2) - G(x)| < h\varepsilon$. Select

 r_1 as in Lemma 6 so that for $1 > r > r_1 > r_0$ we have $|F_x(x, r)| < \varepsilon/2(1-r)^{1/2}$. Choose h_0 such that

- (i) $h_0 < \delta < (1-r_1)^{1/2}$ and hence $1-h^2 > r_1$ for $0 < h < h_0$;
- (ii) for $0 < h < h_0$ we have

$$|G(x, 1-h^2)| < |G(x)|+1 < \max_{|x-x_0| \le h} |G(x)|+1 = K_6,$$

a positive constant, by continuity of G(x) and the uniform convergence of G(x, r) to G(x);

(iii)
$$h_0 < \varepsilon/2K_6$$
;

(iv)
$$h_0 < 1/(x_0^2 + 1)$$
.

Now
$$|G(x, 1-h^2) - G(x)| \le |G(x) - (1-h^2)G(x, 1-h^2)| + h^2|G(x, 1-h^2)|$$
.

$$|G(x) - (1 - h^{2})G(x, 1 - h^{2})| = \left| \lim_{r \to 1} rG(x, r) - \sum_{n=0}^{\infty} (a_{n}/(2n+2)^{2})\Phi'_{n}(x)(1 - h^{2})^{n+1} \right|$$

$$= \left| \lim_{r \to 1} \sum_{n=0}^{\infty} \frac{a_{n}}{2(2n+2)} \Phi'_{n}(x) \left[\frac{r^{n+1}}{n+1} - \frac{(1-h^{2})^{n+1}}{n+1} \right] \right|$$

$$= \left| \lim_{r \to 1} \frac{1}{2} \int_{1-h^{2}}^{r} \sum_{n=0}^{\infty} \frac{a_{n}}{2n+2} \Phi'_{n}(x) \rho^{n} d\rho \right|$$

$$\leq \lim_{r \to 1} \frac{1}{2} \int_{1-h^{2}}^{r} \frac{\varepsilon d\rho}{2(1-\rho)^{1/2}} \quad \text{since } 1 - h^{2} > r_{1}, \text{ for } r > r_{1}$$

$$\leq \lim_{r \to 1} \left[\frac{\varepsilon}{2} h - (1-r)^{1/2} \frac{\varepsilon}{2} \right] = \frac{\varepsilon}{2} h.$$

Thus

$$|G(x, 1-h^2)-G(x)| \leq \varepsilon h + h^2 |G(x, 1-h^2)|;$$

$$\leq \varepsilon/2h + h^2 K_6 \quad \text{for } 0 < h < h_0;$$

$$\leq \varepsilon/2h + h\varepsilon/2 = \varepsilon h, \quad \text{proving } (22).$$

To prove (23) we will prove, for $\varepsilon > 0$ and $0 < h < h_0$, that $(1 - h^2) |\nabla G| < \varepsilon h$, where $\nabla G = G(x_0 + h, 1 - h^2) + G(x_0 - h, 1 - h^2) - 2G(x_0, 1 - h^2)$.

$$(1-h^{2})|\nabla G| = \left| \sum_{n=0}^{\infty} \frac{a_{n}}{(2n+2)^{2}} \Phi'_{n}(x_{0}+h)(1-h^{2})^{n+1} \right|$$

$$+ \sum_{h=0}^{\infty} \frac{a_{n}}{(2n+2)^{2}} \Phi'_{n}(x_{0}-h)(1-h^{2})^{n+1} - 2 \sum_{h=0}^{\infty} \frac{a_{n}}{(2n+2)^{2}} \Phi'_{n}(x_{0})(1-h^{2})^{n+1} \right|$$

$$\leq \frac{1}{2} \left| \sum_{n=0}^{\infty} \left\{ \frac{a_{n}}{2n+2} \Phi'_{n}(x_{0}+h) \int_{r_{0}}^{1-h^{2}} \rho^{n} d\rho + \frac{a_{n}}{2n+2} \Phi'_{n}(x_{0}-h) \int_{r_{0}}^{1-h^{2}} \rho^{n} d\rho - \frac{2a_{n}}{2n+2} \Phi'_{n}(x_{0}) \int_{r_{0}}^{1-h^{2}} \rho^{n} d\rho \right\} \right|$$

$$+ \left| \frac{a_{0}}{4} \left[\Phi'_{0}(x_{0}+h) + \Phi'_{0}(x_{0}-h) - 2\Phi'_{0}(x_{0}) \right] \right|$$

$$\leq \frac{1}{2} \left| \int_{r_{0}}^{1-h^{2}} \left[F_{x}(x_{0}+h,\rho) + F_{x}(x_{0}-h,\rho) - 2F_{x}(x_{0},\rho) \right] d\rho \right| + o(h)$$
since Φ'_{0} is smooth
$$\leq \frac{1}{2} \left| \int_{0}^{1-h^{2}} \int_{0}^{h} \left[F_{xx}(x_{0}+y,\rho) - F_{xx}(x_{0}-y,\rho) \right] dy d\rho \right| + o(h)$$

by the uniform convergence of F_x and F_{xx} . Using the fact that $F_{xx}(x_0, \rho) = (x_0^2 + 1)F(x_0, \rho) - 2\partial[\rho F(x_0, \rho)]/\partial\rho$ we have

$$(1-h^{2})|\nabla G| \leq o(h) + \frac{1}{2} \left| \int_{0}^{1-h^{2}} \int_{0}^{h} \left\{ -2 \frac{\partial}{\partial \rho} \left[\rho F(x_{0}+y,\rho) \right] + \left[(x_{0}+y)^{2} + 1 \right] F(x_{0}+y,\rho) \right. \right. \\ \left. + 2 \frac{\partial}{\partial \rho} \left[\rho F(x_{0}-y,\rho) \right] + \left[(x_{0}-y)^{2} + 1 \right] F(x_{0}-y,\rho) \right\} dy d\rho \left| \right.$$

By Fubini's Theorem, we have

$$(1-h^{2})|\nabla G| \leq o(h) + \frac{1}{2} \left| \int_{0}^{h} \int_{0}^{1-h^{2}} \left\{ -2\frac{\partial}{\partial \rho} \left[\rho F(x_{0}+y,\rho) - \rho F(x_{0}-y,\rho) \right] d\rho \, dy \right\} \right.$$

$$\left. + \int_{0}^{h} \int_{0}^{1-h^{2}} \left\{ \left[(x_{0}+y)^{2} + 1 \right] F(x_{0}+y,\rho) - \left[(x_{0}-y)^{2} + 1 \right] F(x_{0}-y,\rho) \right\} d\rho \, dy \right|.$$

The first integral in (24) is then

$$\left| \int_{0}^{h} (-2)[\rho F(x_{0}+y,\rho) - \rho F(x_{0}-y,\rho)]_{0}^{1-h^{2}} dy \right|$$

$$= \left| -2 \int_{0}^{h} (1-h^{2})[F(x_{0}+y,1-h^{2}) - F(x_{0}-y,1-h^{2})] dy \right|$$

$$= \left| -2 \int_{0}^{h} (1-h^{2}) \int_{x_{0}-y}^{x_{0}+y} F_{x}(x,1-h^{2}) dx dy \right|$$

$$\leq 2 \int_{0}^{h} (1-h^{2}) \int_{x_{0}-y}^{x_{0}+y} |F_{x}(x,1-h^{2})| dx dy$$

$$\leq 2 \int_{0}^{h} \int_{x_{0}-y}^{x_{0}+y} (1-h^{2}) \frac{\varepsilon}{2(1-(1-h^{2}))^{1/2}} dx dy \quad \text{since } r_{1} < 1-h^{2}$$

$$\leq 2 \int_{0}^{h} \frac{\varepsilon(1-h^{2})}{2h} 2y dy = \frac{\varepsilon}{h} (1-h^{2})h^{2} < \varepsilon h.$$

The second integral in (24) is

$$\frac{1}{2} \left| \int_{0}^{h} \int_{0}^{1-h^{2}} \left\{ \left[(x_{0}+y)^{2}+1 \right] F(x_{0}+y, \rho) - \left[(x_{0}-y)^{2}+1 \right] F(x_{0}-y, \rho) \right\} d\rho \, dy \right| \\
\leq \frac{1}{2} (x_{0}^{2}+1) \left| \int_{0}^{h} \int_{0}^{1-h^{2}} \left[F(x_{0}+y, \rho) - F(x_{0}-y, \rho) \right] d\rho \, dy \right| \\
+ \left| \int_{0}^{h} y \int_{0}^{1-h^{2}} \left[F(x_{0}+y, \rho) + F(x_{0}-y, \rho) \right] d\rho \, dy \right| \\
+ \frac{1}{2} \left| \int_{0}^{h} y^{2} \int_{0}^{1-h^{2}} \left[F(x_{0}+y, \rho) - F(x_{0}-y, \rho) \right] d\rho \, dy \right| \\
\leq \frac{1}{2} (x_{0}^{2}+1) \left| \int_{0}^{h} \int_{0}^{1-h^{2}} \int_{-y}^{y} F_{t}(x_{0}+t, \rho) \, dt \, d\rho \, dy \right| \\
+ \int_{0}^{h} y \int_{0}^{1-h^{2}} \left| F(x_{0}+y, \rho) + F(x_{0}-y, \rho) \right| \, d\rho \, dy \\
+ \frac{1}{2} \int_{0}^{h} y^{2} \int_{0}^{1-h^{2}} \int_{-y}^{y} F_{t}(x_{0}+t, \rho) \, dt \, d\rho \, dy \right|.$$

Now using the fact that $|F_t(x, r)| < \varepsilon/(1-r)^{1/2}$ for $r > r_1$, $|F_t(x, r)| < K_7$ for $0 \le r < r_1$, $|F(x, r)| < \varepsilon \log 1/(1-r)$ for $r > r_2$, $|F(x, r)| < K_8$ for $0 \le r < r_2$, we obtain that the second integral in (24) is bounded by

$$\begin{split} \tfrac{1}{2}(x_0^2+1) \int_0^h \left[\int_0^{r_1} \int_{-y}^y K_7 \, dt \, d\rho + \int_{r_1}^{1-h^2} \int_{-y}^y \frac{\varepsilon}{(1-\rho)^{1/2}} \, dt \, d\rho \right] \, dy \\ + \int_0^h y \int_0^{r_2} 2K_8 \, d\rho \, dy + \varepsilon \int_0^h y \int_{r_2}^{1-h^2} \log \left(1/(1-\rho) \right) \, d\rho \, dy \\ + \tfrac{1}{2} \int_0^h y^2 \left[\int_0^{r_1} \int_{-y}^y K_7 \, dt \, d\rho + \int_{r_1}^{1-h^2} \int_{-y}^y \frac{\varepsilon}{(1-\rho)^{1/2}} \, dt \, d\rho \right] \, dy \\ & \leq \tfrac{1}{2}(x_0^2+1) \int_0^h \left[\int_0^{r_1} K_7 \, 2y \, d\rho + \int_{r_1}^{1-h^2} \frac{2\varepsilon y}{(1-\rho)^{1/2}} \, d\rho \right] \, dy \\ + 2K_8 \int_0^h y r_2 \, dy + \varepsilon \int_0^h y \int_{1-r_2}^{h^2} \log s \, ds \, dy \\ + \tfrac{1}{2} K_7 \int_0^h y^2 \left[\int_0^{r_1} 2y \, d\rho + \int_{r_1}^{1-h^2} \frac{2y\varepsilon}{(1-\rho)^{1/2}} \, d\rho \right] \, dy \\ & \leq \tfrac{1}{2}(x_0^2+1) \int_0^h \left[2K_7 y r_1 - \varepsilon y (1-\rho)^{1/2} \big|_{r_1}^{1-h^2} \right] \, dy \\ + 2K_8 r_2 \frac{y^2}{2} \Big|_0^h + \varepsilon \int_0^h y \left[s \log s - s \right]_{1-r_2}^h \, dy \\ & \leq \tfrac{1}{2}(x_0^2+1) \left[K_7 r_1 h^2 - 2\varepsilon (h - (1-r_1)^{1/2}) h^2 \right] \\ + K_8 r_2 h^2 + \varepsilon h^2 \left[(h^2 \log h^2 - h^2) - (1-r_2) \log (1-r_2) + (1-r_2) \right] \\ + K_7 r_1 (h^4/4) - K_7 \varepsilon [h - (1-r_1)^{1/2}] h^4/4 = + O(h^2) = o(h). \end{split}$$

LEMMA 8. Let $f(x, r) = \sum_{n=0}^{\infty} a_n \Phi_n(x) r^n$ exist for $-\infty < x < +\infty$ and $0 \le r < 1$. Suppose that $|f(x, r)| \le \varepsilon(r)/(1-r)$ for $-\infty < x < +\infty$ and $0 \le r < 1$, where $\varepsilon(r)$ is bounded and $\varepsilon(r) = o(1)$ as $r \to 1$. Set $F(x, r) = -\sum_{n=0}^{\infty} (a_n/(2n+2)) \Phi_n(x) r^n$ for $0 \le r < 1$, and suppose that there is $y_1 \in \mathcal{H}$ such that $-\infty < y_1(x) \le f_*(x) \le f^*(x) < +\infty$ for all x. Then $\lim_{r \to 1} F(x, r) = F(x)$ exists and is finite for all x.

Proof. It is sufficient to show $\lim_{r\to 1} rF(x, r)$ exists and is finite.

$$rF(x_0, r) = -\sum_{n=0}^{\infty} \frac{a_n}{2n+2} \Phi_n(x_0) r^{n+1} = -\frac{1}{2} \int_0^r f(x_0, \rho) d\rho.$$

By hypothesis $f_*(x_0)$ and $f^*(x_0)$ are finite, hence $f(x_0, r)$ is bounded in absolute value by $A(x_0) = \sup\{|f^*(x_0)| + 1, |f_*(x_0)| + 1\}$ for $0 < r_3 < r < 1$. If r_4 and r_5 are such that $0 < r_3 < r_4 < r_5 < 1$, then

$$|r_5F(x_0,r_5)-r_4F(x_0,r_4)| \leq \frac{1}{2}\int_{r_4}^{r_5}|f(x_0,\rho)|\ d\rho \leq \frac{A(x_0)}{2}(r_5-r_4)$$

which approaches zero as r_4 and r_5 approach 1.

Generalized derivatives. If G is defined and finite in a neighborhood of the point x, we set $D_1^*G(x) = \limsup_{h\to 0} [G(x+h) - G(x-h)]/2h$. $D_{1*}G(x)$ will designate the corresponding $\lim \inf_{h\to 0}$.

LEMMA 9. Under the same hypothesis as Lemma 8, we have

$$D_{1*}G(x) \leq \liminf_{r \to 1} [F(x,r) + (x^2 + 1)\Omega F(x,r)]$$

$$\leq \limsup_{r \to 1} [F(x,r) + (x^2 + 1)\Omega F(x,r)] \leq D_1^*G(x).$$

Proof. $\Omega F(x, r)$ is well defined since $F(x, r) \in \mathcal{H}$. By Lemmas 7 and 4,

$$G(x, v+r-1) = \int_{-\infty}^{\infty} G(t, r) P\left(x, t, \frac{v+r-1}{r}\right) dt \text{ for } 1 > r > r_0, 1 > v+r-1 > r_0.$$

Taking limits as $r \rightarrow 1$,

$$G(x, v) = \int_{-\infty}^{\infty} G(t)P(x, t, v) dt \quad \text{for } 1 > v > r_0.$$

It is sufficient to show

$$D_{1*}G(x_0) = \liminf_{h \to 0} \frac{G(x_0 + h) - G(x_0 - h)}{2h} \le \liminf_{r \to 1} [F(x_0, r) + (x_0^2 + 1)\Omega F(x_0, r)].$$

If $D_{1*}G(x_0) = -\infty$ we are done. Assume $D_{1*}G(x_0) > q > -\infty$. Observe

$$G_{x}(x_{0}, r) = \sum_{n=0}^{\infty} \frac{a_{n}}{(2n+2)^{2}} \Phi_{n}^{"}(x_{0}) r^{n}$$

$$= -\sum_{n=0}^{\infty} \frac{a_{n}}{2n+2} \Phi_{n}(x_{0}) r^{n} + (x_{0}^{2}+1) \sum_{n=0}^{\infty} \frac{a_{n}}{(2n+2)^{2}} \Phi_{n}(x_{0}) r^{n}$$

since $\Phi_n(x)$ satisfies (16). Therefore

$$G_x(x_0, r) = F(x_0, r) + (x_0^2 + 1)\Omega F(x_0, r) = \int_{-\infty}^{\infty} G(t) P_x(x_0, t, r) dt,$$

and we have to show

$$D_{1*}G(x_0) \leq \liminf_{r \to 1} \int_{-\infty}^{\infty} G(t)P_x(x_0, t, r) dt = \liminf_{r \to 1} G_x(x_0, r).$$

Since $D_{1*}G(x_0) > q > -\infty$ it is sufficient to show

(25)
$$\liminf_{r \to 1} G_x(x_0, r) \ge q.$$

To prove (25) note that

$$G_x(x_0, r) = \int_{-\infty}^{\infty} G(t) P_x(x_0, t, r) dt \quad \text{which by (14)}$$

$$= \frac{\exp\left\{-\frac{x_0^2}{2} \left(\frac{1-r^2}{1+r^2}\right)\right\}}{\pi^{1/2} (1-r^2)^{3/2}} \int_{-\infty}^{\infty} G(t) [-x_0(1+r^2) + 2tr] e^{-u^2} dt$$

where

$$u = \left[\frac{1+r^2}{2(1-r^2)}\right]^{1/2} \left(t - \frac{2x_0r}{1+r^2}\right).$$

Rearranging we find

$$G_{x}(x_{0}, r) = \frac{\exp\left\{-\frac{x_{0}^{2}}{2}\left(\frac{1-r^{2}}{1+r^{2}}\right)\right\}}{\pi^{1/2}(1-r^{2})^{3/2}} \left(-x_{0}\right)(1-r)^{2}$$

$$(26) \qquad \times \left[\int_{0}^{\infty} G(x_{0}+s) \exp\left\{-\left[\frac{1+r^{2}}{2(1-r^{2})}\right]\left[s+x_{0}\frac{(1-r)^{2}}{(1+r^{2})}\right]^{2}\right\} ds$$

$$+ \int_{0}^{\infty} G(x_{0}-s) \exp\left\{-\left[\frac{1+r^{2}}{2(1-r^{2})}\right]\left[s-x_{0}\frac{(1-r)^{2}}{(1+r^{2})}\right]^{2}\right\} ds$$

$$+ \frac{\exp\left\{-\frac{x_{0}^{2}}{2}\left(\frac{1-r^{2}}{1+r^{2}}\right)\right\} 2r}{\pi^{1/2}(1-r^{2})^{3/2}}$$

$$\times \left[\int_{0}^{\infty} G(x_{0}+s)s \exp\left\{-\left[\frac{1+r^{2}}{2(1-r^{2})}\right]\left[s+x_{0}\frac{(1-r)^{2}}{(1+r^{2})}\right]^{2}\right\} ds$$

$$- \int_{0}^{\infty} G(x_{0}-s)s \exp\left\{-\left[\frac{1+r^{2}}{2(1-r^{2})}\right]\left[s-x_{0}\frac{(1-r)^{2}}{(1+r^{2})}\right]^{2}\right\} ds\right].$$

The claim is that (26) is o(1) as $r \to 1$. Because G(x) is bounded by K_5 and using the substitutions $t = [(1+r^2)/2(1-r^2)]^{1/2}[s \pm x_0(1-r)^2/(1+r^2)]$, we find

$$\lim_{r\to 1} |(26)| \leq \frac{|x_0|}{2\pi^{1/2}} K_5 \lim_{r\to 1} (1-r)^{1/2} \left(\frac{1-r^2}{1+r^2}\right)^{1/2} \left\{2 \int_{-\infty}^{\infty} e^{-t^2} dt\right\} = 0.$$

Therefore $G_x(x_0, r)$ can be written as

$$o(1) + \frac{2r \exp\left\{-\frac{x_0^2}{2} \left(\frac{1-r^2}{1+r^2}\right)\right\}}{\pi^{1/2}(1-r^2)^{3/2}} \times \left[\int_0^\infty \left\{G(x_0+s) - G(x_0-s)\right\} s \exp\left\{-\left[\frac{1+r^2}{2(1-r^2)}\right] \left[s+x_0 \frac{(1-r)^2}{(1+r^2)}\right]^2\right\} ds\right]$$

$$(27) \qquad + \frac{2r \exp\left\{-\frac{x_0^2}{2} \left(\frac{1-r^2}{1+r^2}\right)\right\}}{\pi^{1/2}(1-r^2)^{3/2}} \times \left[\int_0^\infty G(x_0-s)s \exp\left\{-\left[\frac{1+r^2}{2(1-r^2)}\right] \left[s+x_0 \frac{(1-r)^2}{(1+r^2)}\right]^2\right\} ds - \int_0^\infty G(x_0-s)s \exp\left\{-\left[\frac{1+r^2}{2(1-r^2)}\right] \left[s-x_0 \frac{(1-r)^2}{(1+r^2)}\right]^2\right\} ds\right].$$

Using the same substitutions, we get $\lim_{r\to 1} |(27)| = 0$, since the exponential term dominates. Thus

$$G_{x}(x_{0}, r) = o(1) + \frac{2r \exp\left\{-\frac{x_{0}^{2}}{2} \left(\frac{1-r^{2}}{1+r^{2}}\right)\right\}}{\pi^{1/2}(1-r^{2})^{3/2}} \times \left[\int_{0}^{\infty} \left\{G(x_{0}+s) - G(x_{0}-s)\right\}s \exp\left\{-\left[\frac{1+r^{2}}{2(1-r^{2})}\right]\left[s + x_{0} \frac{(1-r)^{2}}{(1+r^{2})}\right]^{2}\right\} ds\right].$$

Note it is sufficient to consider the integral only over the interval $s \in [0, \delta]$, for any fixed $\delta > 0$, because the exponential term carries the integral to zero as $r \to 1$, when s is bounded away from zero. Therefore

$$G_{x}(x_{0}, r) = o(1) + \frac{2r \exp\left\{-\frac{x_{0}^{2}}{2} \left(\frac{1-r^{2}}{1+r^{2}}\right)\right\}}{\pi^{1/2} (1-r^{2})^{3/2}}$$

$$\times \left[\int_{0}^{\delta} \left\{G(x_{0}+s) - G(x_{0}-s)\right\} s \exp\left\{-\left[\frac{1+r^{2}}{2(1-r^{2})}\right] \left[s + x_{0} \frac{(1-r)^{2}}{(1+r^{2})}\right]^{2}\right\} ds\right].$$

Since $D_{1*}G(x_0) > q$, we choose δ such that, for $|s| < \delta$, we have

$${G(x_0+s)-G(x_0-s)} > 2qs.$$

Then (28) dominates

$$\frac{\exp\left\{-\frac{x_0^2}{2}\left(\frac{1-r^2}{1+r^2}\right)\right\} 2r2q}{\pi^{1/2}(1-r^2)^{3/2}} \left[\int_0^\delta s^2 \exp\left\{-\left[\frac{1+r^2}{2(1-r^2)}\right]\left[s+x_0\frac{(1-r)^2}{(1+r^2)}\right]^2\right\} ds\right].$$

By the usual substitution, and letting $r \rightarrow 1$,

$$\liminf_{r\to 1} G_x(x_0,r) \ge \frac{4q}{\pi^{1/2}} \int_0^\infty t^2 e^{-t^2} dt = q.$$

LEMMA 10. Let $f(x,r) = \sum_{n=0}^{\infty} a_n \Phi_n(x) r^n$ exist for $-\infty < x < +\infty$ and $0 \le r < 1$. Suppose that $|f(x,r)| \le \varepsilon(r)/(1-r)$ for $-\infty < x < +\infty$ and $0 \le r < 1$, where $\varepsilon(r)$ is bounded and $\varepsilon(r) = o(1)$ as $r \to 1$, and that there is $y_1 \in \mathcal{H}$ such that $-\infty < y_1 \le f_*(x) \le f^*(x) < +\infty$ for all x. Set $F(x,r) = -\sum_{n=0}^{\infty} (a_n/(2n+2))\Phi_n(x) r^n$ for $0 \le r < 1$, and suppose $F(x,r) \to F(x)$, where F(x) is a continuous function on (a,b). Then

- (a) $F(x, r) \rightarrow F(x)$ uniformly on compact subsets of (a, b) as $r \rightarrow 1$;
- (b) $\Lambda * F(x) \ge f_*(x)$ and $f^*(x) \ge \Lambda_* F(x)$ in (a, b).

Proof. Let $[a_1, b_1] \subset (a, b)$. We wish to show $F(x, r) \to F(x)$ uniformly in $[a_1, b_1]$ as $r \to 1$. Let

$$(29) a < a_4 < a_3 < a_2 < a_1 < b_1 < b_2 < b_3 < b_4 < b.$$

Let $\lambda(x)$ be a \mathscr{C}^{∞} function such that

(30)
$$\lambda(x) = 1 \quad \text{in } [a_3, b_3],$$
$$\lambda(x) = 0 \quad \text{for } x \notin [a_4, b_4],$$
$$\lambda(x) \le 1.$$

(31) For
$$x \in (a, b)$$
 define $F_1(x) = \lambda(x)F(x)$ and for $x \notin (a, b)$ define $F_1(x) = 0$.

Then by (29), (30), (31), and the hypothesis we have $F_1(x)$ is continuous, in \mathcal{L}^1 , \mathcal{H} and bounded by a constant, say K. Set

(32)
$$F_1(x,r) = \int_{-\infty}^{\infty} P(x,t,r) F_1(t) dt \text{ for } 0 \le r < 1.$$

Then $F_1(x, r)$ satisfies (8) for $0 \le r < 1$. Since $F_1(x)$ is continuous and in \mathcal{H} , we have $F_1(x, r) \to F_1(x)$ as $r \to 1$ [2, pp. 398–399]. We will show

(33) $F_1(x, r) \to F_1(x)$ uniformly on compact subsets of $(-\infty, \infty)$ as $r \to 1$. Let [c, d] be any closed interval in $(-\infty, \infty)$. For $\varepsilon > 0$ choose r' such that when r > r',

$$\left| \int_{-\infty}^{\infty} P(x, t, r) dt - 1 \right| < \frac{\varepsilon}{2K} \quad \text{on } [c, d].$$

This can be done since $\int_{-\infty}^{\infty} P(x, t, r) dt \to 1$ uniformly on compact subsets. Hence for r > r' we have

$$|F_{1}(x,r) - F_{1}(x)| \leq \left| \int_{-\infty}^{\infty} F_{1}(t) P(x,t,r) dt - \int_{-\infty}^{\infty} F_{1}(x) P(x,t,r) dt \right|$$

$$+ \left| F_{1}(x) \int_{-\infty}^{\infty} P(x,t,r) dt - F_{1}(x) \right|$$

$$\leq \int_{-\infty}^{\infty} |F_{1}(t) - F_{1}(x)| P(x,t,r) dt + K \left| \int_{-\infty}^{\infty} P(x,t,r) dt - 1 \right|$$

$$\leq \frac{\varepsilon}{2} + \int_{-\infty}^{x-\delta} + \int_{x-\delta}^{x} + \int_{x+\delta}^{x+\delta} |F_{1}(t) - F_{1}(x)| P(x,t,r) dt$$

where $\delta > 0$ is to be chosen. Since $\lim_{r \to 1} P(x, t, r) = 0$ uniformly for $|x - t| \ge \delta$ and $|F_1(t) - F_1(x)| \le 2K$, the integrals $\int_{-\infty}^{x - \delta}$ and $\int_{x + \delta}^{\infty}$ go to zero uniformly on [c, d]. Choose δ by the uniform continuity of $F_1(x)$ on [c, d] such that, for the given $\epsilon > 0$, we have that when $|x - t| < \delta$ then $|F_1(t) - F_1(x)| < \epsilon/4$. Then

$$\int_{x}^{x+\delta} |F_{1}(t)-F_{1}(x)|P(x,t,r)|dt \leq \frac{\varepsilon}{4} \int_{x}^{x+\delta} P(x,t,r)|dt \leq \frac{\varepsilon}{4} \int_{-\infty}^{\infty} P(x,t,r)|dt$$

which converges to $\varepsilon/4$ uniformly on compact subsets. The integral $\int_{x-\delta}^{x} similarly$ becomes smaller than $\varepsilon/4$, proving (33).

Since $F_1(x) = F(x)$ on $[a_1, b_1]$, we have $F_1(x, r) \to F(x)$ uniformly on $[a_1, b_1]$. It remains to show $F(x, r) - F_1(x, r) \to 0$ uniformly on $[a_1, b_1]$.

$$H(x, r) = \sum_{n=0}^{\infty} \frac{a_n}{(2n+2)^2} \Phi_n(x) r^n \qquad (0 \le r < 1).$$

Claim:

(34) $H(x, r) \rightarrow H(x)$, a bounded continuous function, and the convergence is uniform in x.

To see this, choose $r_1 > r_2 > 1/2$. Then

$$|r_1 H(x, r_1) - r_2 H(x, r_2)| \leq \frac{1}{2} \left| \sum_{n=0}^{\infty} \frac{a_n}{2n+2} \Phi_n(x) \int_{r_2}^{r_1} \rho^n d\rho \right|$$

$$\leq \frac{1}{2} \int_{r_2}^{r_1} |F(x, \rho)| d\rho \to 0$$

uniformly in x as $r_1, r_2 \to 1$ since $|F(x, r)| \le \varepsilon_2(r) \log 1/(1-r)$ by Lemma 6. Thus H(x, r) is bounded for all x and is in \mathcal{H} . By [2, Theorems 2 and 8] we also have

$$H(x, r) = \Omega F(x, r) \sim \sum_{n=0}^{\infty} \frac{a_n}{(2n+2)^2} \Phi_n(x) r^n.$$

Observe $H(x, r) - \int_{-\infty}^{\infty} P(x, t, r) H(t) dt$ satisfies all the hypothesis of Lemma 2, which proves $H(x, r) = \int_{-\infty}^{\infty} P(x, t, r) H(t) dt$. Define

$$H_1(x, r) = \Omega F_1(x, r)$$
 $(0 \le r < 1)$.

(35) Note $H_1(x, r) \to H_1(x)$ uniformly for x on compact subsets of $(-\infty, \infty)$ where $H_1(x)$ is a bounded and continuous function, since

$$\lim_{r \to 1} \Omega F_1(x, r) = -\lim_{r \to 1} \int_{-\infty}^{\infty} F_1(t, r) k(x, t) dt$$
$$= -\int_{-\infty}^{\infty} F_1(t) k(x, t) dt = \Omega F_1(x)$$

and $F_1(x, r) \to F_1(x)$ uniformly for x on compact subsets. By Lemma 2 applied to $H_1(x, r) - \int_{-\infty}^{\infty} P(x, t, r) H_1(t) dt$ we find

$$H_1(x,r) = \int_{-\infty}^{\infty} P(x,t,r)H_1(t) dt$$
 $(0 \le r < 1).$

Set

$$H_2(x, r) = H(x, r) - H_1(x, r) \qquad (0 \le r < 1).$$

Then by (34) and (35), setting $H_2(x) = H(x) - H_1(x)$ we have

 $H_2(x, r) \to H_2(x)$ uniformly for x in compact subsets, where $H_2(x)$ is a bounded continuous function in \mathcal{H} .

Set

$$F_2(x, r) = F(x, r) - F_1(x, r)$$
 $(0 \le r < 1)$.

(36) Then $F_2(x, r) \to F_2(x)$, where $F_2(x) = 0$ for $x \in [a_3, b_3]$. Setting

$$F_1(x, r) \sim -\sum_{n=0}^{\infty} \frac{a'_n}{2n+2} \Phi_n(x) r^n,$$

we have

$$H_1(x, r) = \Omega F_1(x, r) \sim \sum_{n=0}^{\infty} \frac{a'_n}{(2n+2)^2} \Phi_n(x) r^n$$

and

$$H_2(x,r) \sim \sum_{n=0}^{\infty} \frac{(a_n - a'_n)}{(2n+2)^2} \Phi_n(x) r^n = \sum_{n=0}^{\infty} \frac{\tilde{a}_n}{(2n+2)^2} \Phi_n(x) r^n.$$

Claim:

(37)
$$H_2(x) \sim \sum_{n=0}^{\infty} \frac{\tilde{a}_n}{(2n+2)^2} \Phi_n(x).$$

Since $H_2(x) \in \mathcal{H}$ we have

$$H_2(x) \sim \sum_{n=0}^{\infty} \frac{b_n}{(2n+2)^2} \Phi_n(x)$$

and by the continuity of $H_2(x)$,

$$\sum_{n=0}^{\infty} \frac{b_n}{(2n+2)^2} \Phi_n(x) r^n \to H_2(x)$$

uniformly on compact subsets. We also have

$$\sum_{n=0}^{\infty} \frac{\tilde{a}_n}{(2n+2)^2} \Phi_n(x) r^n \to H_2(x)$$

uniformly on compact subsets. Thus applying Lemma 2 to

$$\sum ((b_n - \tilde{a}_n)/(2n+2)^2)\Phi_n(x)r^n$$

we have

$$\tilde{a}_n = b_n$$
 for all *n*, proving (37).

By [2, Theorem 4], $\Lambda_* H_2(x) \leq F_2^*(x)$ and $F_{2*}(x) \leq \Lambda^* H_2(x)$. By (36) we have $\Lambda_* H_2(x) \leq 0 \leq \Lambda^* H_2(x)$ on $[a_3, b_3]$. By [2, p. 395], $H_2(x)$ satisfies (17) in $[a_3, b_3]$. (38) That is, $H_2(x)$ is twice differentiable in $[a_3, b_3]$ and $\Lambda H_2(x) = 0$ in $[a_3, b_3]$. Now $\Lambda H_2(x, r) = \int_{-\infty}^{\infty} \Lambda P(x, t, r) H_2(t) dt$ since $H_2(x) \in \mathcal{H}$ by [2, p. 398]. We will show

(39)
$$\Lambda H_2(x, r) \to 0 \quad \text{uniformly in } [a_1, b_1] \text{ as } r \to 1.$$

Now $\Lambda P(x, t, r) = -2[rP(x, t, r)]_r = P_{tt}(x, t, r) - (t^2 + 1)P(x, t, r)$. Since $H_2(t)$ is bounded, $\int_{x+\delta}^{\infty} \Lambda P(x, t, r) dt = -2\int_{x+\delta}^{\infty} [rP(x, t, r)]_r dt \to 0$ uniformly on compact subsets for any fixed $\delta > 0$, and similarly $\int_{-\infty}^{x-\delta} \Lambda P(x, t, r) dt \to 0$ uniformly in compact subsets, it is sufficient to restrict ourselves to $\int_{a_2}^{b_2} \Lambda P(x, t, r) H_2(t) dt$.

$$\int_{a_2}^{b_2} \Lambda P(x, t, r) H_2(t) dt = \int_{a_2}^{b_2} [P_{tt}(x, t, r) - (t^2 + 1)P(x, t, r)] H_2(t) dt$$

$$= \int_{a_2}^{b_2} P_{tt}(x, t, r) H_2(t) dt - \int_{a_2}^{b_2} (t^2 + 1)P(x, t, r) H_2(t) dt$$

$$= H_2(b_2) P_t(x, b_2, r) - H_2(a_2) P_t(x, a_2, r) - H_2'(b_2) P(x, b_2, r)$$

$$+ H_2'(a_2) P(x, a_2, r) + \int_{a_2}^{b_2} P(x, t, r) \Lambda H_2(t) dt.$$

The integral in (40) is zero on $[a_1, b_1]$ by (38). The first two terms in (40) go to zero uniformly on $[a_1, b_1]$ by (29), since b_2 is not contained in $[a_1, b_1]$, and $P_t(x, t, r) \to 0$ uniformly for $|x-t| \ge \delta > 0$.

Thus (39) will be proved if we show

(41) $H'_2(b_2)P(x, b_2, r)$ and $H'_2(a_2)P(x, a_2, r) \rightarrow 0$ uniformly on $[a_1, b_1]$. Since $G(x, r) \rightarrow G(x)$ uniformly in x, and G(x) is bounded, we have

$$\lim_{r \to 1} \int_0^x G(t, r) dt = \int_0^x \lim_{r \to 1} G(t, r) dt = \int_0^x G(t) dt.$$

Hence

$$\lim_{r \to 1} \int_0^x \sum_{n=0}^\infty \frac{a_n}{(2n+2)^2} \, \Phi_n'(t) r^n = \lim_{r \to 1} \sum_{n=0}^\infty \int_0^x \frac{\Phi_n'(t) r^n}{(2n+2)^2} \, dt$$

$$= \lim_{r \to 1} \left[\sum_{n=0}^\infty \frac{a_n}{(2n+2)^2} \, \Phi_n(x) r^n - \sum_{n=0}^\infty \frac{a_n}{(2n+2)^2} \, \Phi_n(0) r^n \right]$$

$$= H(x) - H(0).$$

This means $H(x) - H(0) = \int_0^x G(t) dt$ or H'(x) = G(x). Defining

$$G_1(x, r) = \Omega \left[\frac{\partial}{\partial x} F_1(x, r) \right]$$

we get $G_1(x, r) \rightarrow G_1(x)$ uniformly, where $G_1(x)$ is bounded and continuous.

Setting $G_2(x) = G(x) - G_1(x)$ we see that $G_2(x)$ is a bounded and continuous function since G(x) and $G_1(x)$ are. Thus (41) is proved if we can show

 $G_2(b_2)P(x, b_2, r)$ and $G_2(a_2)P(x, a_2, r)$ converge uniformly to zero on $[a_1, b_1]$ as $r \to 1$.

But $G_2(x)$ is bounded and $b_2 \notin [a_1, b_1]$. Thus $P(x, b_2, r)$ and $P(x, a_2, r) \to 0$ uniformly on $[a_1, b_1]$. This proves (39). Since $\Lambda H_2(x, r) = F_2(x, r)$ we have:

 $F(x, r) - F_1(x, r) \to 0$ uniformly on $[a_1, b_1]$, which completes the proof that $F(x, r) \to F(x)$ uniformly on compact subsets of (a, b).

Since $F_1(x) \in \mathcal{H}$, we have

$$F_1(x) \sim \sum_{n=0}^{\infty} \frac{a'_n}{2n+2} \Phi_n(x)$$

where $a'_n = \int_{-\infty}^{\infty} F_1(t) \Phi_n(t) dt$. Then

$$F_{1}(x, r) = \int_{-\infty}^{\infty} F_{1}(t)P(x, t, r) dt = \int_{-\infty}^{\infty} F_{1}(t) \sum_{n=0}^{\infty} \Phi_{n}(x)\Phi_{n}(t)r^{n} dt$$

$$= \sum_{n=0}^{\infty} \left[\int_{-\infty}^{\infty} \Phi_{n}(t)F_{1}(t) dt \right] \Phi_{n}(x)r^{n}$$

$$= -\sum_{n=0}^{\infty} \frac{a'_{n}}{2n+2} \Phi_{n}(x)r^{n},$$

which is consistent with our previous notation.

By [2, Theorem 4] we have

(42)
$$\Lambda^* F_1(x) \ge \liminf_{r \to 1} \sum_{n=0}^{\infty} a'_n \Phi_n(x) r^n = \liminf_{r \to 1} [-2r F_1(x, r)]_r.$$

Since $F_1(x) = F(x)$ on $[a_3, b_3]$, we have

(43)
$$\Lambda^* F_1(x) = \Lambda^* F(x) \text{ for } x \in [a_1, b_1].$$

Repeating the identical argument which showed $\Lambda H_2(x,r) \to 0$ uniformly on $[a_1, b_1]$ as $r \to 1$, and using the properties that $\Lambda P(x, t, r)$ and $[\Lambda P(x, t, r)]_t$ converge uniformly to zero for $|x-t| \ge \delta > 0$, we have $\Lambda[\Lambda H_2(x, r)] \to 0$ uniformly on $[a_1, b_1]$.

This means $[rF(x, r)]_r - [rF_1(x, r)]_r \to 0$ uniformly on compact subsets of (a, b). This gives, for $x_0 \in (a, b)$,

(44)
$$\liminf_{r \to 1} -2[rF(x_0, r)]_r = \liminf_{r \to 1} -2[rF_1(x_0, r)]_r.$$

But

(45)
$$\lim_{r \to 1} \inf -2[rF(x_0, r)]_r = f_*(x_0).$$

Thus combining (42), (43), (44), and (45) we have $\Lambda^*F(x) \ge f_*(x)$. The proof that $f^*(x) \ge \Lambda_*F(x)$ follows by a change of sign.

 Λ -convex functions. The function F(x) is said to be Λ -convex in (a, b) if the equations y(c) = F(c) and y(d) = F(d) for a < c < d < b imply that $F(x) \le y(x)$ for c < x < d, where y(x) is a solution of (17).

Generalized convex functions of this type have been studied by Beckenbach and Bing [8][9]. In particular, if F is Λ -convex in (a, b), then F is continuous in (a, b) and F(a+), F(b-) exist (as finite numbers or $\pm \infty$).

LEMMA 11. Let $f(x,r) = \sum_{n=0}^{\infty} a_n \Phi_n(x) r^n$ exist for $-\infty < x < +\infty$ and $0 \le r < 1$. Suppose that $|f(x,r)| \le \varepsilon(r)/(1-r)$ for $-\infty < x < +\infty$ and $0 \le r < 1$, where $\varepsilon(r)$ is bounded and $\varepsilon(r) = o(1)$ as $r \to 1$, and that there is $y_1 \in \mathcal{H}$ such that $-\infty < y_1(x) \le f_*(x) \le f^*(x) < +\infty$ for all x. Set $F(x,r) = -\sum_{n=0}^{\infty} (a_n/(2n+2)) \Phi_n(x) r^n$ for $0 \le r < 1$, and suppose $F(x,r) \to F(x)$, where F(x) is a continuous function on (a,b). Then F(x) is continuous in [a,b].

Proof. It will be shown that:

- (46) F(a+) exists (finite or $\pm \infty$) and
- (47) F(a) = F(a+) and is finite.

By symmetry we then have F(x) is continuous at b. By hypothesis we have $-\infty < y(x) \le f_*(x) \le f^*(x) < +\infty$. Let u(x) be a function chosen as in [2, p. 396] such that

u(x) is upper semicontinuous,

$$u(x) \le y(x) < +\infty$$
 for all x, and

 $u(x) \in \mathcal{H}$.

Set $W(x) = F(x) - \Omega u(x)$. Then $\Lambda^* W(x) \ge \Lambda^* F(x) - \Lambda^* \Omega u(x) \ge f_*(x) - u(x) \ge y(x) - u(x) \ge 0$ by [2, p. 392] and Lemma 10.

Applying [2, p. 395], we have W(x) is Λ -convex in (a, b). Since W is Λ -convex to the right of a, this means

$$W(a+)$$
 exists as a finite number or $\pm \infty$.

By the continuity of $\Omega u(x)$, this proves (46). To prove (47), we select a < a' < b' < b. Since

$$G(x, r) = \sum_{n=0}^{\infty} \frac{a_n}{(2n+2)^2} \Phi'_n(x) r^n$$
 for $0 \le r < 1$,

and $\Phi_n(x)$ satisfies (16),

$$G_{x}(x, r) = \sum_{n=0}^{\infty} \frac{a_{n}}{(2n+2)^{2}} \Phi_{n}''(x) r^{n}$$

$$= -\sum_{n=0}^{\infty} \frac{a_{n}}{2n+2} \Phi_{n}(x) r^{n} + (x^{2}+1) \sum_{n=0}^{\infty} \frac{a_{n}}{(2n+2)^{2}} \Phi_{n}(x) r^{n}$$

$$= F(x, r) + (x^{2}+1) H(x, r).$$

Thus

$$G(a+h,r) = \int_{a'}^{a+h} F(t,r) dt + \int_{a'}^{a+h} (t^2+1)H(t,r) dt + G(a',r).$$

Taking the limit as $r \rightarrow 1$, and applying Lemmas 7 and 10 we have

$$G(a+h)-G(a') = \int_{a'}^{a+h} F(t) dt + \int_{a'}^{a+h} (t^2+1)H(t) dt.$$

Since F(a+) exists (as finite or $\pm \infty$) we can take the limit as $a' \rightarrow a$ and get

$$G(a+h)-G(a) = \int_{a}^{a+h} F(t) dt + \int_{a}^{a+h} (t^2+1)H(t) dt.$$

Thus

$$\lim_{h \to 0.7} \frac{G(a+h) - G(a)}{h} = F(a+1) + (a^2+1)H(a)$$

and this must be finite or $\pm \infty$.

But G is smooth by Lemma 7, which means that the right-hand and left-hand limits must agree. Therefore $G'(a) = F(a+1) + (a^2+1)H(a)$. Applying Lemma 9

$$G'(a) = \lim_{r \to 1} [F(a, r) + (a^2 + 1)H(a, r)]$$

= $F(a) + (a^2 + 1)H(a)$.

This means F(a) = F(a+). By Lemma 8, F(a) is everywhere finite, proving (47).

LEMMA 12. Let $f(x, r) = \sum_{n=0}^{\infty} a_n \Phi_n(x) r^n$ exist for $-\infty < x < +\infty$ and $0 \le r < 1$. Suppose that $|f(x, r)| \le \varepsilon(r)/(1-r)$ for $-\infty < x < +\infty$ and $0 \le r < 1$, where $\varepsilon(r)$ is bounded and $\varepsilon(r) = o(1)$ as $r \to 1$, and that there is $y_1 \in \mathcal{H}$ such that $-\infty < y_1(x) \le f_*(x) \le f^*(x) < +\infty$ for all x. Set

$$F(x, r) = -\sum_{n=0}^{\infty} \frac{a_n}{2n+2} \Phi_n(x) r^n \text{ for } 0 \le r < 1.$$

Then F(x) is continuous in $(-\infty, \infty)$.

Proof. Let R>0. It is sufficient to show F(x) is continuous on (-R, R). In Lemma 8 we saw that the function

$$F(x, r) = -\sum_{n=0}^{\infty} \frac{a_n}{2n+2} \Phi_n(x) r^n, \qquad 0 \le r < 1,$$

was Poisson summable at all points x to a function F(x). Let E be the set of points at which F(x) is discontinuous. We propose to show that E is the empty set.

Choose increasing sequence $\{r_n\}_{n=1}^{\infty}$ with $r_1=0$ and $r_n\to 1$ as $n\to\infty$, and with the property that if $r_n\le r\le r_{n+1}$, then $|f(x,r)-f(x,r_n)|\le 1$ for $|x|\le 2R$. Since $\limsup_{n\to\infty}|f(x,r_n)|\le f^*(x)<+\infty$, given any closed nondegenerate interval \overline{J} contained in the interior of (-R,R) there exists, by [10, Lemma 4, p. 645], a constant M and a closed nondegenerate subinterval \overline{J}_1 of \overline{J} such that $|f(x,r_n)|\le M$ for x in \overline{J}_1 . But then $|f(x,r)|\le M+1$ for $0\le r<1$ and x in \overline{J}_1 . This fact implies that $F(x,r)\to F(x)$ uniformly for x in \overline{J}_1 , and therefore that F(x) is continuous in \overline{J}_1 . We conclude that the set E is nondense in (-R,R).

Suppose E contains an isolated point z_0 . Then there is an h > 0 such that $-R < z_0 - h < z_0 + h < R$ and such that F(x) is continuous in each of the open intervals $(z_0 - h, z_0)$ and $(z_0, z_0 + h)$. Applying Lemma 11, F(x) is continuous at z_0 , thus E contains no isolated points.

If E is not vacuous, its closure \overline{E} is perfect. We again apply [10, Lemma 4, p. 645]. Let $\pi = J \cdot \overline{E}$, where J is a segment, be a portion of \overline{E} on which F(x) is continuous. Let (a, b) be a segment contiguous to π . On (a, b), F(x) is continuous. Thus by Lemma 11, F(x) is continuous on [a, b]. If $x_0 \in E$ is a left-hand endpoint or right-hand endpoint of one of the contiguous intervals of π , this gives F(x) is continuous at x_0 . Thus we may suppose x_0 is the limit of left-hand endpoints of contiguous intervals. Applying Lemma 11 to each contiguous interval (c, d), we have F(c) = F(c+) and F(d) = F(d-). Defining $W(x) = F(x) - \Omega u(x)$ as in Lemma 11, we have W(x) is Λ -convex in each interval and W(c+) = W(c), W(d-) = W(d). It follows that if x_0 is any point of π , then W(x) is upper semicontinuous at x_0 . Then W(x) is upper semicontinuous in J. Thus E is vacuous and F(x) is continuous in (-R, R).

The above proof is very similar to the analogous theorem for trigonometric series [3, p. 355].

CHAPTER II

Major theorems.

THEOREM I. Let the series $\sum_{n=0}^{\infty} a_n \Phi_n(x) r^n$ converge, for $0 \le r < 1$, to f(x, r). Suppose that

- (i) |f(x, r)| = o(1/(1-r)) uniformly in x as $r \to 1$;
- (ii) there is a function $y_1 \in \mathcal{H}$ such that $-\infty < y_1(x) \le f_*(x) \le f^*(x) < +\infty$ for all x;
- (iii) there is a function $y_2 \in \mathcal{H}$ such that $-\infty < y_2(x) \le F(x)$ for all x.

Then the series $\sum_{n=0}^{\infty} a_n \Phi_n(x)$ is Poisson summable almost everywhere, and is the Hermite series of its Poisson sum.

Proof. As in Lemma 10, we set

$$H(x, r) = \Omega F(x, r) = \sum_{n=0}^{\infty} \frac{a_n}{(2n+2)^2} \Phi_n(x) r^n.$$

In (34) we showed H(x, r) converged to the continuous and bounded function H(x) as $r \to 1$. Repeating the argument of (37), we have

$$H(x) \sim \sum_{n=0}^{\infty} \frac{a_n}{(2n+2)^2} \Phi_n(x).$$

By [2, Theorem 5] and hypothesis (iii), the series $-\sum_{n=0}^{\infty} (a_n/(2n+2))\Phi_n(x)$ is Poisson summable almost everywhere (we already proved in Lemma 8 this was everywhere to F(x)) and

(48)
$$F(x) \sim \sum_{n=0}^{\infty} \frac{a_n}{2n+2} \, \Phi_n(x).$$

Again applying [2, Theorem 5] to (48), because of Lemma 12 and hypothesis (ii), we have that the series $\sum_{n=0}^{\infty} a_n \Phi_n(x)$ is Poisson summable almost everywhere and is the Hermite series of its Poisson sum.

This result extends Rudin's results [2, Theorem 6], because the condition $a_n = o(n^{1/4})$ implies |f(x, r)| = o(1/(1-r)) uniformly in x as $r \to 1$. In fact, since

$$P(x, x, r) = \sum_{n=0}^{\infty} \Phi_n(x) \Phi_n(x) r^n = O(1/(1-r)^{1/2})$$

uniformly in x as $r \to 1$, and $\sum_{n=0}^{\infty} o(n^{1/2})r^n = o((1/(1-r))^{3/2})$ as $r \to 1$, we have

$$|f(x,r)| = \left| \sum_{n=0}^{\infty} (a_n r^{n/2}) (\Phi_n(x) r^{n/2}) \right| \le \left(\sum_{n=0}^{\infty} a_n^2 r^n \right)^{1/2} \left(\sum_{n=0}^{\infty} \Phi_n^2(x) r^n \right)^{1/2}$$
$$\le \left[o \left(\frac{1}{1-r} \right)^{3/2} \right]^{1/2} \left[O \left(\frac{1}{(1-r)^{1/2}} \right) \right]^{1/2} = o \left(\frac{1}{1-r} \right)$$

uniformly in x as $r \to 1$. If $a_n = o(n^{1/4})$, the condition that $F(x) \in \mathcal{H}$ follows from the Riesz-Fischer Theorem.

THEOREM II. Let the series $\sum_{n=0}^{\infty} a_n \Phi_n(x) r^n$ converge, for $0 \le r < 1$, to f(x, r). Suppose that

- (i) |f(x,r)| = o(1/(1-r)) uniformly in x as $r \to 1$;
- (ii) $\lim_{r\to 1} f(x, r) = 0$ for all x.

Then $a_n = 0$ for all n.

Proof. By Lemmas 10 and 12, $F(x,r) = -\sum_{n=0}^{\infty} (a_n/(2n+2))\Phi_n(x)r^n$ converges as $r \to 1$ uniformly on compact subsets. By Lemma 10(b) we also have that $\Lambda^*F(x) \ge 0 \ge \Lambda_*F(x)$. Applying [2, Corollary 6.3], F(x) is a solution to (17) for all x, that is $F''(x) - (x^2 + 1)F(x) = 0$. By (16),

$$\Phi_n(x) = (x^2+1) \frac{\Phi_n(x)}{2n+2} - \frac{\Phi_n''(x)}{2n+2}$$

Thus

$$-(x^2+1)\sum_{n=0}^{\infty}\frac{a_n}{(2n+2)^2}\Phi_n(x)r^n+\sum_{n=0}^{\infty}\frac{a_n}{(2n+2)^2}\Phi_n''(x)r^n\to F(x)$$

uniformly on compact subsets. Integrating twice,

$$\sum_{n=0}^{\infty} \frac{a_n r^n}{(2n+2)^2} \int_0^x \int_0^s \Phi_n''(t) dt ds - \int_0^x \int_0^s (t^2+1) H(t,r) dt ds$$

converges to $\int_0^x \int_0^s F(t) dt ds$, where $H(x, r) = \Omega F(x, r)$, $(0 \le r < 1)$, as defined in Lemma 10. Since

$$\int_{0}^{x} \int_{0}^{s} \Phi_{n}''(t) dt ds = \int_{0}^{x} \left[\Phi_{n}'(s) - \Phi_{n}'(0) \right] ds = \Phi_{n}(x) - \Phi_{n}(0) - x\Phi_{n}'(0),$$

$$\sum_{n=0}^{\infty} \frac{a_{n}}{(2n+2)^{2}} \Phi_{n}(x) r^{n} - \sum_{n=0}^{\infty} \frac{a_{n}}{(2n+2)^{2}} \Phi_{n}(0) r^{n} - x \sum_{n=0}^{\infty} \frac{a_{n}}{(2n+2)^{2}} \Phi_{n}'(0) r^{n} - \int_{0}^{x} \int_{0}^{s} (t^{2}+1) H(t, r) dt ds \quad \text{converges to } \int_{0}^{x} \int_{0}^{s} F(t) dt ds.$$

But (49) is known to converge to

$$H(x) - H(0) - xG(0) - \int_0^x \int_0^s (t^2 + 1)H(t) dt ds$$

Therefore

(50)
$$H(x) - H(0) - xG(0) - \int_0^x \int_0^s (t^2 + 1)H(t) dt ds = \int_0^x \int_0^s F(t) dt ds.$$

Since H and G are bounded (Lemmas 7 and 10), the left-hand side of (50) is $O(x^4)$ for x large.

Since the function $\beta(x) = e^{x^2/2} \int_{-\infty}^{x} e^{-u^2} du$ and $\beta(-x) = e^{x^2/2} \int_{-\infty}^{-x} e^{-u^2} du$ are linearly independent solutions to (17), we have $F(x) = c_1 \beta(x) + c_2 \beta(-x)$. Let

$$g_1(x) = \frac{c_1}{x^4} \int_0^x \int_0^s \beta(t) dt ds$$
 and $g_2(x) = \frac{c_2}{x^4} \int_0^x \int_0^s \beta(-t) dt ds$.

As $x \to +\infty$, $g_1(x) \to +\infty$ and $g_2(x) \to 0$. So if $\int_0^x \int_0^s F(t) dt ds$ is $O(x^4)$, then $c_1 = 0$. As $x \to -\infty$, $g_2(x) \to +\infty$ and $g_1(x) \to 0$. So if $\int_0^x \int_0^s F(t) dt ds$ is $O(x^4)$, then $c_2 = 0$. Thus F(x) = 0 for all x. Theorem I now applies and gives us $0 \sim \sum_{n=0}^{\infty} a_n \Phi_n(x)$ or $a_n = 0$ for all n.

We cannot replace the condition o(1/(1-r)) by O(1/(1-r)) in Theorems I and II. To illustrate this, if we differentiate $e^{x^2/2}P(x, 0, r)$ we get

$$f(x,r) = \sum_{n=0}^{\infty} (2n+2)^{1/2} \Phi_{n+1}(0) \Phi_n(x) r^n = \frac{-2rx}{\pi^{1/2} (1-r^2)^{3/2}} \exp\left\{-\frac{x^2}{2} \left(\frac{1-r^2}{1+r^2}\right)\right\}$$

$$(0 \le r < 1).$$

This is a series of Hermite functions for which $f(x, r) \to 0$ for all $x, F(x) \in \mathcal{H}$, and f(x, r) = O(1/(1-r)) uniformly in x as $r \to 1$. This series is clearly not the zero series, and we conclude the above condition is in a certain sense best possible.

BIBLIOGRAPHY

- 1. J. Indritz, Methods in analysis, Macmillan, New York, 1963.
- 2. W. Rudin, Uniqueness theory for Hermite series, Trans. Amer. Math. Soc. 70 (1951), 387-403.
 - 3. A. Zygmund, Trigonometric series, Vol. I. Cambridge Univ. Press, New York, 1959.
- 4. V. Shapiro, The uniqueness of solutions of the heat equation in an infinite strip, Trans. Amer. Math. Soc. 125 (1966), 326-361.
 - 5. G. Sansone, Orthogonal functions, Interscience, New York, 1959.
- 6. G. N. Watson, Notes on generating functions of polynomials. II: Hermite polynomials, J. London Math. Soc. 8 (1933), 194-199.
- 7. G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., Vol. 23, Amer. Math. Soc., Providence, R. I., 1939; rev. ed. 1967.
- 8. E. F. Beckenbach, Generalized convex functions, Bull. Amer. Math. Soc. 43 (1937), 363-371.
- 9. E. F. Beckenbach and R. H. Bing, On generalized convex functions, Trans. Amer. Math. Soc. 58 (1945), 220-230.
- 10. V. Shapiro, The uniqueness of functions harmonic in the interior of the unit disc, Proc. London Math. Soc. 13 (1963), 639-652.

University of California, Davis, California University of California, Riverside, California